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ABSTRACT

In general relativity, physical states are represented by isometry classes
of solutions of Einstein’s field equations. The resulting space Grav(V) of
the totality of such states on a 4-dimensional manifold V' is known as the
space of gravitational degrees of freedom. We investigate the mathematical
structure of this space when V is diffeomorphic to R x M, where M is a
closed 3-dimensional manifold which represents the spatial cosmic topology
of the universe. One of our main results is how the topology of M gets
encoded into the structure of Grav(V'). We give a simple generic topologi-
cal condition on M such that for spacetimes with constant mean curvature
hypersurfaces, Grav(V') has the natural structure of an infinite-dimensional
symplectic manifold on an open dense subset and that on the complement
of this set, a nowhere dense subset, Grav(V') has singularities which are of
orbifold type, that is, of a manifold modulo a finite group action.

Let 7 be a real number < 0 and let £.(V) denote the space of globally-
hyperbolic mazximally-developed vacuum spacetimes that admit a Cauchy hy-
persurface ¥, with (CMC) constant mean curvature = 7. Let D(V') denote
the group of diffeomorphisms of V. The space of gravitational degrees of
freedom of &.(V) is then defined to be Grav.(V) = &.(V)/D(V). Let
Cu(M)NCs(M)NC, (M) denote the intersection of the spaces of ADM Cauchy
data (g, m) on M that satisfy the Hamiltonian and divergence constraints and
that have constant mean curvature 7. Then we construct a natural bijection

gT(V) bijection C’H(M) N CJ(M) N CT(M)

Grav,(V) = DY) > D(M) o] = (g7, 7))

that maps orbits to orbits and which provides a natural parameterization for
Grav, (V).

We give a simple generic topological condition on M, deg M = 0, where
deg M = max{dim /,(M) | g € Riem(M)} is the maximum dimension of all
isometry groups I,(M) of all Riemannian metrics g on M. This condition
guarantees that the constraint space CMC(7) = Cy (M) NCs(M)NC.(M) is
a smooth global infinite dimensional manifold of Wheeler dimension 700® =
(12—1—3—1)oc®. The orbit space of isometry classes of CMC(7) Cauchy data
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(Cx(M)NCs(M)NC.(M))/D(M) is then an infinite dimensional manifold of
Wheeler dimension 400 = (7—3)o0® away from the orbifold type singularities
which occur on a nowhere dense set.

We discuss potential applications of our work to 3-manifold geometriza-
tion and cosmology, which if successful, would give a dynamical reason, pro-
vided by Einstein’s equations, to explain the observed fact that the universe
is spatially locally homogeneous and isotropic and in such a state so as to
continue expanding forever. In such a case, these physical aspects of our uni-
verse would be a temporal asymptotic consequence of Einstein’s evolution
equations, rather than having to be imposed externally as part of a cosmo-
logical principle, and thus would be a spectacular and dramatic cosmological
confirmation of Einstein’s equations.



